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Inherent Bias toward the Null Hypothesis in Conventional Multipoint
Nonparametric Linkage Analysis
Nicholas J. Schork and Tiffany A. Greenwood
Polymorphism Research Laboratory, Department of Psychiatry, University of California, San Diego

Traditional nonparametric “multipoint” statistical procedures have been developed for assigning allele-sharing
values at a locus of interest to pairs of relatives for linkage studies. These procedures attempt to accommodate a
lack of informativity, nongenotyped loci, missing data, and related issues concerning the genetic markers used in
a linkage study. However, such procedures often cannot overcome these phenomena in compelling ways and, as a
result, assign relevant relative pairs allele-sharing values that are “expected” for those pairs. The practice of assigning
expected allele-sharing values to relative pairs in the face of a lack of explicit allele-transmission information can
bias traditional nonparametric linkage test statistics toward the null hypothesis of no locus effect. This bias is due
to the use of expected values, rather than to a lack of information about actual allele sharing at relevant marker
loci. The bias will vary from study to study on the basis of the DNA markers, sample size, relative-pair types, and
pedigree structures used, but it can be extremely pronounced and could contribute to a lack of consistent success
in the application of traditional nonparametric linkage analyses to complex human traits and diseases. There are
several potential ways to overcome this problem, but their foundations deserve greater research. We expose many
of the issues concerning allele sharing with data from a large affected-sibling-pair study investigating the genetic
basis of autism.

Introduction

Linkage analysis has been a workhorse for gene discov-
ery in human genetics research for the past 50 years or
so (Lander and Schork 1994; Schork and Chakravarti
1996). Although there have been spectacular successes
in the application of parametric linkage analysis to
overtly Mendelian, monogenic traits and diseases (e.g.,
cystic fibrosis and neurofibromatosis), there has been a
noticeable and somewhat discouraging lack of success
in the application of nonparametric linkage analyses to
more complex traits and diseases, such as hypertension
and psychiatric disorders. This is the case despite the
fact that nonparametric linkage analysis models have
been developed, expanded, and tested for years in com-
plex trait analysis (Weeks and Lange 1988; Lander and
Schork 1994; Whittemore 1996; Blangero et al. 2001;
Sengul et al. 2001). This lack of success has raised many
questions, including the suggestion that traditional non-
parametric linkage analysis strategies are inherently
flawed and should be replaced with other gene-discovery
strategies and study designs (Risch and Botstein 1996;
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Risch and Merikangas 1996). However, despite the fact
that nonparametric linkage analysis strategies are
plagued by certain problems, many of these problems
are not only identifiable but potentially correctable.
Thus, before abandoning nonparametric linkage-anal-
ysis gene-discovery strategies, it makes sense to attempt
to identify and correct any problems they might possess,
in an effort to determine their ultimate utility.

One problem plaguing traditional nonparametric
linkage analysis techniques is rooted in the use and es-
timation of a quantity of fundamental significance to
their foundation: the fraction of alleles that are shared
identical by descent (IBD) at a locus of interest between
pairs of relatives. This quantity is often tested directly
for its significance in, for example, affected sibling pair
analyses (as a deviation from an expected null hypoth-
esis value of 0.5), or it is related to some measure of
phenotypic similarity for quantitative trait analyses
(e.g., squared difference in phenotypic values between
the relative pairs for Haseman-Elston regression anal-
ysis [Haseman and Elston 1972] or covariation in rel-
ative-pair trait values for variance-components–based
analysis [Blangero et al. 2001]). In this article, we argue
that the manner in which measures of allele sharing are
computed and assigned to pairs of relatives in tradi-
tional nonparametric linkage analyses can be very prob-
lematic and can induce biases in associated test statistics
toward the null hypothesis of no linkage—a fact that
may explain why many applications of nonparametric
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linkage analysis to complex traits and diseases are con-
troversial or not compelling. These problems stem from
the use or assignment of expected allele-sharing values
to pairs of relatives when marker information is unin-
formative (to whatever degree) and/or when interpo-
lating allele-sharing values at loci between distant
marker loci. To introduce our discussion, we provide a
simple analogy.

Consider a situation in which one believes that a
coin may not be fair or weighted evenly; this coin,
for example, lands on “heads” more often than ex-
pected. The null hypothesis is that heads and tails
each have an equal chance of occurring with any
toss—that is, versusH : 50/50 ⇒ Pr (heads) p 0.500

. To test the null hypothesis, anH : Pr (heads) 1 0.501

experimenter flips a coin 100 times. The experimenter
can only observe with certainty whether a coin landed
heads or tails in 50 of the 100 flips. Let’s say that 40
heads were observed in these 50 tosses. On the basis of
these tosses, the experimenter constructs an estimate of
the probability of heads as . Now the40/50 p 0.80
question is what to do with the other 50 tosses? One
could argue that, on the basis of expectation (under the
null hypothesis), the probability that the coin landed
heads in these 50 tosses is 0.50. Assigning expected
values to these tosses and including them in the con-
struction of an estimate of the probability of heads (and
ultimately a test statistic that uses this estimate) would
lead to an estimate of —a value(40 � 25)/100 p 0.65
that is much closer to the null hypothesis value than if
one excluded those observations. This bias toward the
null hypothesis, which results from using expected val-
ues, will occur even if there is no more than a tendency
(no matter how strong) for the assigned probabilities to
be consistent with the null hypothesis. The use of a
simple mixture model that considers each alternative
outcome of the toss and then weights each outcome by
probability will not overcome this problem as long as
those probabilities are consistent with expectation.

Now the connection to allele-sharing–based non-
parametric linkage analyses can be made. Consider the
simplest case of an affected sibling pair analysis in which
one wants to test the hypothesis that there is skewing
at a locus toward greater allele sharing among the af-
fected sibling pairs than expected (i.e., expected allele-
sharing values are consistent with expected values dic-
tated by Mendel’s laws). If some fraction of the sibling
pairs’ genotypes are uninformative at the locus, then
assigning them allele-sharing values consistent with ex-
pectation will bias the test toward the expected, null
hypothesis outcome that there is no skewing toward
greater allele sharing, just as in the case of the coin
tosses! The problem with using expected allele-sharing
values is not unique to affected sibling pair analyses; it
carries over to regression and variance-component–

analysis techniques for quantitative traits, although the
effect of the bias is more subtle.

The problems inherent in the use of the traditional
allele-sharing measures that we describe can be over-
come, to some degree, through the use of weighting
procedures, modified (and more appropriate) mixture
models, and/or removing uninformative relative pairs
from the analysis. These strategies are considered in
more detail in the “Discussion” section. We argue that
such strategies should motivate greater theoretical re-
search into nonparametric linkage analysis methods.

Subjects and Methods

Autism Study Data

A sample of 122 affected sibling pairs was abstracted
from the Autism Genetic Resource Exchange (AGRE).
These sibling pairs were considered affected under the
“narrow” definition of autism discussed on the AGRE
Web site. For example-data analyses, we focused on 26
microsatellite markers collected on chromosome 2 for
these sibling pairs.

Simulation Studies

A set of 200 affected sibling pairs was simulated under
the assumption that a hypothetical disease was influ-
enced by genes with the properties provided in table 1.
Simulated fully informative parental marker data (as-
suming complete linkage of the marker and trait locus)
were generated and, combined with simulated Mende-
lian segregation, were used to generate two hypothetical
offspring—that is, sibling pairs. These sibling pairs were
then ascertained, or “sampled,” on the basis of both
individuals being affected by the disease. Allele-sharing
values—that is, values—were then computed. A frac-p̂

tion of the sibling pairs, chosen randomly from the 200,
were then assigned allele-sharing values of p(0) p

, , and (ultimately leading0.25 p(1) p 0.50 p(2) p 0.25
to assigned values of 0.5) to simulate a complete lackp̂

of allele-sharing information among sibling pairs in the
sample. To investigate linkage of the disease to the sim-
ulated locus, we computed LOD scores by use of a simple
multinomial mixture model. The relationship between
the computed LOD scores and the fraction of uninform-
ative sibling pairs was examined (as in fig. 5). The cal-
culations for the multinomial-model–based LOD score
were straightforward. Let , , and (n n n N p n �0 1 2 0

) be the observed number of affected sibling pairsn � n1 2

sharing 0, 1, and 2 alleles IBD, respectively. The expected
number of sibling pairs sharing 0, 1, and 2 alleles for
N sibling pairs under the null hypothesis of no linkage
follows a multinomial distribution with probabilities

, , and . The maximum-p p 0.25 p p 0.50 p p 0.250 1 2

likelihood estimates (MLEs) of , , and , for a sam-p p p0 1 2



308 Am. J. Hum. Genet. 74:306–316, 2004

Table 1

Parameter Values Used in the Simulation Studies to Assess the Impact of Noninformative Sibling Pairs on LOD Scores Calculated for 200
Affected Sibling Pairs and Estimates of Bias As a Function of the Frequency of Uninformative Sibling Pairs

SIMULATION

DISEASE

PREVALENCE

ALLELE

FREQUENCY

HOMOZYGOTE

PENETRANCE

PHENOCOPY

FREQUENCY

LOD SCORE, BY % DESIGNATED UNINFORMATIVE

5% 10% 25% 50%

Missinga Expectedb Missinga Expectedb Missinga Expectedb Missinga Expectedb

1 .050 .100 .500 .000 8.61 8.05 8.34 7.28 8.28 5.75 7.47 3.07
2 .083 .050 .750 .050 4.52 4.31 4.31 3.89 2.98 2.28 2.37 1.21
3 .082 .150 .500 .010 4.23 4.00 5.07 4.49 4.29 3.13 4.61 2.15
4 .114 .200 .250 .100 .19 .18 .35 .31 .24 .18 .12 .06
5 .012 .010 .750 .005 19.06 17.54 19.84 16.57 17.76 11.47 10.88 4.03
6 .116 .100 .750 .050 2.68 2.54 2.53 2.26 2.24 1.65 1.01 .52

a The LOD score achieved when the uninformative pairs are removed form the analysis.
b The LOD score achieved when uninformative sibling pairs are kept in the analysis but expected allele-sharing probabilities are used for them in the construction

of the LOD score.

ple of N affected sibling pairs, are simply ,p̂ p n /N0 0

, and . The uninformative siblingˆ ˆp p n /N p p n /N1 1 2 2

pairs contribute values of 0.25, 0.50, and 0.25 to ,n0

, and . In this way, the uncertainty in allele-sharingn n1 2

values for the uninformative sibling pairs is accounted
for in the construction of the test statistic by considering
the possible allele-sharing values for each of these pairs
and their associated probabilities. A likelihood-ratio-sta-
tistic–based LOD score for linkage at a single locus can
be calculated (ignoring a constant) as follows:

n n n0 1 2ˆ ˆ ˆ(p ) (p ) (p )0 1 2LOD p log . (1)10 n n n0 1 2{ }(0.25) (0.50) (0.25)

Here, it is understood that a deviation from expected
values for expected sibling pairs, in which there is an
excess of sibling pairs sharing 0 alleles, is not consistent
with linkage. This simple simulation study focused on
the effect of completely uninformative pairs in an anal-
ysis and therefore reflects a worst-case scenario. This was
done to make certain points, not to provide a compre-
hensive survey of what could happen in any given data
set. Essentially, most studies will have a mixture of com-
pletely and partially informative pairs in their data, so
the results of our simulation studies are not unrealistic.

Results

The Calculation of p̂

The fundamental quantity in traditional nonpara-
metric linkage analysis models, including variance-com-
ponent models, is, as noted in the introduction, the frac-
tion of alleles that are shared IBD between pairs of
relatives. For expository purposes, we will focus on al-
lele-sharing measures for sibling pairs, but our argu-
ments and their implications apply to all pairs of rela-
tives. For sibling pairs, this fundamental allele-sharing
quantity is often referred to mathematically as . In ex-p̂

pectation, pairs of siblings should share half of their
genes, and, hence, should be 0.5, on average, over thep̂

autosomal genome as a whole. Deviation of from 0.5p̂

for any given sibling pair or set of sibling pairs at a
particular locus reflects random Mendelian segregation
of transmitted alleles. Since different sibling pairs may
have values that deviate from 0.5 at different loci,p̂

variation in the average value for a group of siblingp̂

pairs will occur over the genome. This variation in the
value of over the genome and across different siblingp̂

pairs can be used to form tests of linkage implicating a
trait-influencing locus and a particular marker locus or
genomic position: intuition suggests that siblings with
similar phenotypes should share more alleles at loci en-
coding genes that influence those phenotypes.

To estimate at a particular marker locus, one needsp̂

to compute the probabilities that the sibling pair shares
0, 1, or 2 alleles IBD. Let these probabilities be , ,p p0 1

and . The value for can then be estimated as a simpleˆp p2

weighted average:

p̂ p (p # 0.0) � (p # 0.5) � (p # 1.0) (2)0 1 2

Algebraic formulations for computing from markerp̂

data have been discussed extensively in the literature
(see, for example, the groundbreaking work of Haseman
and Elston [1972]). If the marker data are completely
informative (i.e., it is obvious which alleles were trans-
mitted to the sibling pairs by their parents) then one of

, , or will equal 1.0, and will equal either 0.0,ˆp p p p0 1 2

0.5, or 1.0, respectively. If the marker data are not com-
pletely informative, then , , will be !1 and thep p p0 1 2

resulting values will tend to 0.5, the expected allele-p̂

sharing value for siblings. To estimate at a locus forp̂

which no genotype information is available, one can
exploit “multipoint” statistical procedures. These pro-
cedures leverage information about at marker loci inp̂

the vicinity of the locus in question to draw inferences
about at that locus. This is typically pursued either byp̂
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Figure 1 A mating between individuals heterozygous for the same alleles at a single locus that produces two heterozygous offspring (A).
In this situation, the fraction of alleles shared between the siblings is not known with certainty: the siblings either share 0 alleles with 0.5
probability (B) or 2 alleles with 0.5 probability (C). However, the conventional (and correct) estimate of the fraction of alleles shared by this
sibling pair would be p̂ p (0.5 # 0.0) � (0.0 # 0.5) � (0.5 # 1.0) p 0.5.

using a simple weighted sum (Fulker et al. 1995; Olson
1995) or by considering all possible multilocus genotype
and haplotype combinations that could have been trans-
mitted to a pair of offspring and then computing their
probabilities (Lander and Green 1987; Kruglyak and
Lander 1998; Abecasis et al. 2002). The details of the
weighted average approach are simple, and they expose
aspects of the proposed problems associated with tra-
ditional nonparametric linkage statistics. Let be thep̂�

allele-sharing fraction that is to be estimated at locus
from values at K loci that neighbor on either sideˆ� p �

(denoted through subscripts, , that identify their po-p̂�

sitions relative to ), then the basic multipoint weighted�
average formula can be represented as

…ˆ ˆ ˆ ˆp p w p � � w p � w p� ��K ��K ��2 l�2 ��1 ��1

…ˆ ˆ ˆ� w p � w p � � w p (3)��1 ��1 ��2 ��2 ��K ��K ,

where ( ) is computed at the observed (genotyped)p̂ j ( �j

flanking marker loci. The value of is a weight assignedwj

to each various , given knowledge about the distancesp̂j

in base pairs and the recombination frequencies between
the loci j and the target locus, . If the value of each�

is not based on completely informative markers, and,p̂j

hence, tends toward values of 0.5, will also tend to-p̂�

ward a value of 0.5. In addition, because the estimate
of is based, in part, on the probability of recombi-p̂�

nation occurring between the locus and the neighbor-�
ing marker loci, which, although possibly small, will
always be greater than 0, there will never be complete
certainty or a lack of ambiguity in the fraction of alleles
shared at locus . Thus, will tend toward 0.5 even ifˆ� p�

the neighboring marker loci used in the multipoint cal-
culation are completely informative.

A Worst-Case Example of the Use of Expected Allele-
Sharing Probabilities

As an example of problems encountered in assigning
values to sibling pairs with uninformative markers, con-p̂

sider the situation involving the doubly heterozygous mat-
ing in figure 1. The heterozygosity of the two offspring
creates ambiguity in the fraction of alleles that they share
IBD: the siblings either share 0 alleles, with 0.5 proba-
bility, or 2 alleles, with 0.5 probability. However, the con-
ventional (and correct) estimate of the fraction of alleles
shared by this sibling pair would be, from equation 2:

.p̂ p (0.5 # 0.0) � (0.0 # 0.5) � (0.5 # 1.0) p 0.5
Oddly, though, the probability that this sibling pair shares
0.5 alleles (i.e., one allele out of two) is 0!

Algorithms for Computing Allele-Sharing Probabilities

The probabilities , , and , which are used top p p0 1 2

compute values in single-point and multipoint settings,p̂

are provided to the user by many of the available non-
parametric linkage analysis software packages and com-
puter programs. Figure 2 displays a sample of the output
from the programs ASPEX sib_ibd (Hinds and Risch
1996) and MERLIN (Abecasis et al. 2002) for a set of
affected sibling pairs abstracted from a study on the
genetic basis of autism. This output is merely represen-
tative of the complete output obtained from these pro-
grams, since it focuses on a single locus on chromosome
2 for a selected number of sibling pairs. Figure 2 shows
that, for many loci, , , and are !1.0, suggestingp p p0 1 2

that there is ambiguity in the fraction of alleles that are
shared IBD for these sibling pairs at this locus. This is
not to suggest that the multipoint procedures imple-
mented in these programs are incorrect but rather that
they can only take advantage of the information about
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Figure 2 Example of output from MERLIN (A) and ASPEX sib_ibd (B) providing probabilities that a set of sibling pairs with autism
share 0, 1, or 2 alleles IBD at a particular locus. Note that since the locus chosen was a locus at which marker data were available, results will
therefore be more informative for allele sharing than a locus for which marker locus information is not available. Note also that, for the third
sibling pair (family 17, sibling pair identifiers 3 and 4), MERLIN and ASPEX give discrepant probabilities, despite the use of the same marker
loci.

allele-sharing provided by the marker loci. If that in-
formation is lacking, multipoint procedures cannot over-
come it. Of course, the way these programs take ad-
vantage of this information is based on different
mathematical and statistical assumptions and constructs.
Figure 3 provides scatter plots reflecting the agreement
between values for , as computed by use of MERLIN,p̂

ASPEX sib_ibd, and ASPEX sib_phase, for 122 autistic
sibling pairs at loci on chromosome 2. Figure 3a com-
pares the results from MERLIN and ASPEX sib_ibd and
suggests that there is considerable disagreement between
these two procedures. Figure 3b compares the results
from MERLIN and ASPEX sib_phase and suggests that,
although there is better agreement in assigned values,p̂

both procedures agree that some sibling pairs (those in-
side the ovals) have been assigned values on the basis
of a lack of information. Figure 4 provides a histogram
reporting the number of sibling pairs assigned certain

values and the frequency distribution of the variancesp̂

in assigned for the 122 autistic sibling pairs. Ambiguityp̂

in allele-sharing assignments is evident from this figure
in both the percentage of sibling pairs with values (0,p̂

0.5, or 1, as well as in sibling pairs with a variance in
that is 10.p̂

The Effect of Ambiguity in on Linkage Analysesp̂

As noted, when ambiguity in exists for a large num-p̂

ber of sibling pairs and expected values are used to guide
relevant allele-sharing probabilities, the effect will be to
bias the average for the entire collection of siblingp̂

pairs toward a value of 0.5. This occurs as a result of
the fact that the three allele-sharing probabilities, ,p0

, and , assigned to individuals with uninformativep p1 2

marker data will tend to the expected values of 0.25,
0.50, and 0.25, respectively. The effect of this bias in

toward values of 0.5 is most easily interpreted, andp̂

most intuitive, for cases involving the analysis of affected
sibling pairs: the allele-sharing value 0.5, to which p̂

values obtained from uninformative markers and multi-
point calculations tend, is the value implicated in the
null hypothesis of no linkage! Thus, sibling pairs that
have been assigned a value of 0.5 because of ambi-p̂

guities in allele-transmission data weaken a linkage sig-
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Figure 3 Scatter plots of the relationships and agreement between estimates for 122 sibling pairs with autism, generated by use ofp̂

MERLIN and either ASPEX sib_ibd (A) or sib_phase (B) options at a particular locus on chromosome 2.

nal, despite the fact that these sibling pairs may actually
harbor the relevant disease-susceptibility alleles at or
near the marker loci used to assess allele sharing.

The degree to which a lack of marker informativity
can influence a linkage signal can be explored in a
straightforward manner via simulation studies. Figure
5a presents the relationship between LOD scores by use
of 200 affected sibling pairs and the fraction of these
affected sibling pairs that are completely uninformative
(assigned value of 0.5; see the “Subjects and Methods”p̂

section), by use of the hypothetical genetic models de-
scribed in table 1. Figure 5 clearly shows a rapid decrease
in evidence for linkage as a function of values biasedp̂

toward 0.5, as well as considerable variation in the de-
crease in LOD score. This variation occurs because the
assignment of a value of 0.5 to sibling pairs that arep̂

uninformative may involve the assignment of a value of
0.5 to pairs that actually share 0 alleles, hence increasing
evidence for linkage. Thus, it is likely random which
sibling pairs (i.e., those that actually share 0, 1, or 2
alleles IBD at a disease-relevant locus) will be uninform-
ative at a given marker locus, including those carrying
disease-relevant alleles. We explored this phenomenon
further by simulating different sets of 200 sibling pairs
whose hypothetical disease was influenced by the same
genetic mechanism and then considering the relationship
between the decay in LOD score and the fraction of
uninformative sibling pairs. Figure 5b plots the results
from five different simulations, showing the variation in
the decay of linkage evidence. Although this phenome-
non is considered further in the “Discussion” section,
one can conceptualize the problem of a lack of allele-

sharing information and the assignment of as one inp̂

which measurement error (i.e., trying to estimate fromp̂

uninformative markers) confounds the detection of a
“signal” (i.e., the actual allele-sharing value).

To show that the practice of using expected allele-
sharing values in the construction of linkage statistics
results in a true bias (and not just a power loss because
of a lack of marker genotype information and a con-
sequent reduction in sample size) we simply compared
LOD scores computed when sibling pairs with unin-
formative genotype data are removed from an analysis
to those computed when they are kept in the analysis
but have expected allele-sharing probabilities. The re-
sults are provided in table 1, and they show that there
is a considerable loss of power (i.e., a drop in LOD score)
associated with the traditional practice of keeping un-
informative sibling pairs in an analysis with expected
allele-sharing values. This drop in LOD score is more
dramatic than that associated with the exclusion of these
uninformative sibling paris and is thus due to a bias, not
a sample-size–related power loss.

Obviously, our simulation studies examining the effect
of completely uninformative sibling pairs in an affected
sibling pair study should be complemented by studies
investigating, for example, partially informative sibling
pairs and other analysis contexts, such as Haseman-Els-
ton regression tests for linkage involving a quantitative
trait (Haseman and Elston 1972). The effect of unin-
formative assigned values on quantitative trait linkagep̂

analysis can be anticipated, however. For Haseman-Els-
ton regression analysis, assignment of values biasedp̂

toward 0.5 will essentially “flatten” the regression to-
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Figure 4 The frequency distributions of values (A) and the variance in (B) for 122 affected sibling at a particular locus on chromosomeˆ ˆp p

2. Varying degrees of ambiguity in allele-sharing assignments are reflected both in sibling pairs with values (0, 0.5, or 1 (A) and in siblingp̂

pairs with a variance in (B).p̂ 1 0

ward the null hypothesis slope value of 0 (the same ap-
plies to mixture models that merely consider all possible
allele-sharing values if the probabilities of those allele-
sharing values are expected values). For variance-com-
ponent analysis, bias in values toward expected valuesp̂

will cause the locus-specific allele-sharing coefficient ma-
trix to have entries very close to those in the general
kinship coefficient used to model residual genetic effects
(Blangero et al. 2001). This would make it difficult to
distinguish specific locus effects from general genetic
background effects, hence depleting evidence for specific
locus effects.

A Practical Example: Affected Sibling Pairs with Autism

We also examined the effect of ambiguity in valuesp̂

on an actual affected sibling pair linkage study. We com-
puted values for 122 affected sibling pairs in a ge-p̂

nomewide linkage study of autism, but we limited at-
tention to chromosome 2. Figure 6a plots the fraction
of sibling pairs with at least one of the three allele-shar-
ing probabilities (i.e., the probability of sharing 0, 1, or
2 alleles IBD) 10.95 (solid line), 10.75 (dashed line), and
10.5 (dotted line) at loci on chromosome 2. Clearly,
imprecise assignments of exist in this data set for chro-p̂

mosome 2 because of ambiguity in allele sharing. The
effect of this ambiguity on evidence for linkage is de-
picted in figure 6b. Subsets of the affected sibling pairs
were considered in the calculation of a simple t statistic
assessing the departure of the average value from 0.5,p̂

on the basis of confidence in their assigned individual
values. In this figure, confidence in assigned valuesˆ ˆp p

was assessed on the basis of the variance associated with
the assigned values (a variance of 0 would indicatep̂

that one of the three allele-sharing probabilities was

equal to 1.0). As can be seen in figure 6b, although no
linkage signal emerged from the analysis, evidence for
linkage was influenced by the inclusion and/or exclusion
of sibling pairs with ambiguous values.p̂

Discussion

The phenomenon discussed in this paper—the influence
of a lack of marker informativity on assigned relative-
pair values and nonparametric linkage statistics—in-p̂

vites comparison to the effects of marker informativity
on traditional parametric linkage analyses. For example,
it is well known that the contribution to the overall
LOD-score obtained in parametric linkage settings will
simply be 0 for pedigrees with uninformative marker
information. Although a LOD score of 0 is not consistent
with linkage in parametric settings, and, hence, unin-
formative families detract from a linkage signal in para-
metric settings as well, there is greater concern in the
assignment of values to sibling pairs with uninform-p̂

ative-marker loci in constructing nonparametric linkage
statistics. This is both because of the bias inherent in the
use of expected allele-sharing values and the variation,
or “noise,” in linkage signals associated with the fact
that different relative pairs will provide more or less
information to a linkage signal (and hence more or less
bias) at different loci. Thus, as noted, for some sibling
pairs, an assigned value of 0.5 on the basis of expec-p̂

tation (and not on the basis of informative-marker in-
formation) may actually provide greater evidence for
linkage for that sibling pair (e.g., consider the case where
those sibling pairs would reveal a value of 0 if markersp̂

were informative but instead are assigned a value of 0.5
because of the practice of using expected values in the
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Figure 5 The effect of uninformative sibling pairs on the power of affected sibling pair LOD score statistics assessing linkage. The X-
axis simply reflects the number of sibling pairs assigned a value of 0.5 because of a lack of informativity. A, Each curve represents a differentp̂

locus effect (in terms of risk of disease) on the basis of the hypothetical gene effects outlined in table 1. The heavy solid line represents simulation
1 with uninformative sibling pairs removed (missing); the solid line represents simulation 1 with uninformative sibling pairs assigned expected
values (expected); the heavy dotted line represents simulation 2, missing; and the dotted line represents simulation 2, expected. B, Five simulations
assuming the same genetic model (equivalent to simulation 2 in table 1) and showing variation in LOD score because of the random sampling
of uninformative sibling pairs.

face of a lack of informativity). Thus, lack of marker
informativity and the use of ambiguously assigned p̂

values in nonparametric linkage analysis create variation
in linkage signals that uninformative pedigrees do not
create in parametric linkage analysis settings.

There is an important caveat in assessing the impact
of uninformative sibling pairs on nonparametric linkage
analyses. Claiming “no evidence for linkage” on the
basis of, for example, insignificant test statistics in non-
parametric linkage analyses that use allele-sharing val-
ues, needs to be qualified: if, in fact, there is a problem
with marker informativity in a relevant nonparametric
linkage study, then the bias toward the null hypothesis
of no linkage should not actually be taken as evidence
for no linkage. In this light, statistical geneticists should
define “exclusion criteria” for linkage in nonparametric
linkage settings that would be analogous to the exclu-
sion criteria (e.g., a LOD score !�2.0) used in para-
metric settings. There are potential ways of overcoming
the bias we discuss. We describe five methods below, all
of which demand greater attention.

Identifying Genomic Areas for Which Marker Data Are
Uninformative

As part of a linkage study, one could critically examine
the information content of the markers by use of the
strategies described by Kruglyak et al. (1996) and Ri-
jsdijk and Sham (2002) and note areas of the genome
for which there is a lack of genotypic information. In
addition, one could simply examine, for each relative
pair, the computed allele-sharing probabilities , , andp p0 1

, as well as the assigned values, that go into theˆp p2

construction of a linkage statistic (e.g., fig. 2) to identify
both areas of the genome and particular relative pairs
that contribute to potential bias in the test statistics.

Removing Uninformative Relative Pairs

An easy solution—one discussed in the context of the
coin-flip example detailed in the introduction—is simply
to remove from the analysis sibling pairs that have been
assigned allele-sharing probabilities and values consis-
tent with expectation because of a lack of marker ge-
notype information. As discussed, the loss in power re-
sulting from a smaller sample size may not be as great
as the loss in power resulting from the bias toward the
null hypothesis of no linkage when uninformative rel-
ative pairs are kept in the analysis but with assigned
allele-sharing probabilities consistent with expectation
(table 1). Removal of relative pairs can be problematic
if the relative pairs are not completely uninformative,
since one would have to make a potentially arbitrary
decision as to the “level” of informativity that must be
surpassed for a pair to be considered in the calculation
of a test statistic.

Downweighting Uninformative Relative Pairs

Instead of removing uninformative relative pairs from
an analysis, one could “downweight” their contribution
to a linkage test statistic by taking advantage of some
measure of the degree of confidence in assigned valuesp̂

(e.g., the inverse of the variance in assigned value).p̂
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Figure 6 A, Number of affected sibling pairs with at least one of the three allele-sharing probabilities (i.e., sharing 0, 1, or 2 alleles) IBD
greater than 0.95 (solid line), 0.75 (dashed line), and 0.5 (dotted line) for the autism data on chromosome 2. The horizontal line corresponds
to the number of sibling pairs in the study. B, Affected sibling pair t statistic values assessing the departure of the average value from thep̂

“no linkage” null hypothesis value for all sibling pairs (dashed line), sibling pairs with variance values � 0.10 (dotted line), and sibling pairsp̂

with variance values �0.05 (solid line) for chromosome 2.p̂

The determination of an optimal method for weighting
the relative pairs, however, may be complicated, in that
there are an infinite number of ways one could poten-
tially assign confidence levels to allele-sharing probabil-
ities, with some being more advantageous than others
in certain situations.

Using Appropriate Mixture Models

As emphasized, the use of a mixture model in the
construction of a relevant linkage test statistic will not
overcome the bias problem we raise if the allele-sharing
probabilities, or “mixing weights,” used to evaluate the
mixture have been assigned on the basis of expected
allele-sharing values. However, mixture models do help
in certain (rare) situations, including the “double het-
erozygote mating with two heterozygous offspring” ex-
ample discussed in the context of figure 1: using a simple

value for the two siblings leads to the absurd resultp̂

that they share 1 allele, whereas considering the true
(and valid) allele-sharing possibilities of 0 and 2 alleles
for this pair in a mixture model makes more sense. There
are, however, very serious issues in the formulation of
the type of mixture model used currently in linkage anal-
ysis (e.g., the formulation discussed in Kruglyak et al.
1996). Mixture models in nonparametric linkage anal-
yses use information about allele-sharing probabilities
computed solely on the basis of marker genotype data
(e.g., from Mendel’s laws with parental genotypes, from
multipoint calculations using flanking genotype infor-
mation that account for recombination, etc.). If there are
any uncertainties in this genotype data, they are sup-
planted or dealt with by resorting to expected values in

relevant calculations, as this study has made clear. Prob-
abilities of various genotype configurations then act as
“mixing weights” in nonparametric linkage analysis
mixture models. This is where the problem lies. For most
mixture model formulations, some additional or ancil-
lary piece of information is brought into the relevant
computations to inform the calculation of the mixing
weights. For example, in most mixture models involving
a quantitative trait, the actual quantitative values of the
trait in question are used to inform the mixing weights;
for example, individuals with higher trait values are as-
sumed to have a higher probability of belonging to a
group whose average trait value is higher than individ-
uals in other groups (see, e.g., Titterington et al. 1985
and numerous references therein). This is simply not
done in nonparametric linkage analysis mixture models,
although it could be. Thus, if one had, for example, data
that included both phenotypically concordant and dis-
cordant sibling pairs, and if, for some of those sibling
pairs, there was ambiguity in their allele-sharing status,
then an appropriately formed maximum-likelihood–
based mixture model might consider the possibility that
the discordant pairs are more likely to share fewer alleles
and the concordant pairs are more likely to share more
alleles. As such, the phenotypic information would help
guide the assignment to ambiguous allele-sharing prob-
abilities that are meant to capture linkage information
about the phenotype in question. One could formulate
such a model, compute relevant MLEs under an appro-
priate null and alternative hypothesis, and test for link-
age in the usual way. Such a strategy could, to some
degree, overcome the bias problem that we have dis-
cussed. By not allowing the information about relative-
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pair phenotypic similarity to help guide the assignment
of allele-sharing probabilities (and vice versa), tradi-
tional mixture model–based linkage statistics suffer from
biases induced by the use of expected allele-sharing val-
ues that are based on genetic information alone, which
are, ironically, meant to overcome ambiguities in those
allele-sharing probabilities.

Using a Denser Genetic Map

The best way to avoid, but not completely alleviate,
the bias issue we discuss is to conduct a study in which
minimal amounts of marker genotype uninformativity
will occur. Such a study might involve aspects of the
methods discussed above but perforce would involve the
use of a greater density of polymorphic markers that are
not prone to genotyping errors. This would, however,
raise the expense of the study.

The phenomenon of random variation in marker in-
formativity at sites around the genome for a given col-
lection of sibling pairs also raises broader issues in ge-
nome scans, since different sets of sibling pairs will
contribute different linkage information over the ge-
nome. This phenomenon is as true for parametric linkage
analysis as it is for nonparametric linkage analysis, and
it explains why such tremendous variation—in, for ex-
ample, genomewide LOD plots—is typically observed.
Unfortunately, such genomewide variation in contribu-
tion to the linkage statistic has far-reaching implications
for linkage studies. If one wanted to investigate epistasis
or gene-gene interaction by using, for example, allele-
sharing information at two or more loci, then it might
be highly unlikely that the same set of sibling pairs will
be informative for allele sharing at all those loci. This
occurrence would clearly confound the ability to detect
epistasis—a phenomenon that is known to be difficult
to detect, in the first place, because of power issues.

The issue discussed in this paper does invite some very
harsh and radical conclusions. Thus, not only should
future studies planning to use nonparametric linkage
analyses take stock of potential biases resulting from the
use of relative-pair allele-sharing probability assign-
ments rooted in expected values, but also researchers
who have actually conducted relevant linkage studies in
the past and who ignored or were not aware of this
problem should go back and revisit their analyses.
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